Single-fiber-based hybridization of energy converters and storage units using graphene as electrodes.
نویسندگان
چکیده
Recently, there has been great interest in wearable and stretchable energy generation and storage devices utilizing nanotechnology for applications such as self-powering nanosystem that harvests its operating energy from the environment. [ 1 ] Solar, mechanical and thermal energy can be scavenged from the environment using devices that were fabricated using fl exible or stretchable substrates. For example, textile-fi bre-based nanogenerators have been demonstrated utilizing ZnO nanowires (NWs) grown on Kevlar fi bres to scavenge low-frequency mechanical energy. [ 2 ] Twisted fi bre-like electrodes have been used for harvesting solar energy using the dye-sensitized solar cells (DSSCs) approach. [ 3 ] Once the energy is harvested from the environment, an energy storage device is required in order to maintain the operation of the system, but it is usually a separated unit from the energy converters. Flexible batteries. [ 4 ]
منابع مشابه
Fabrication of cu based metal-organic framework / graphene Nanocomposite and study electrochemical performance in supercapacitors
High conductivity and high level of electrolyte availability are the main requirements of active materials used in supercapacitors (SCs) to achieve high electrochemical efficiency. In recent years, metal-organic frameworks (MOFs) have been used as electrode materials for SCs due to their suitability of porosity and high surface area. However, using single-component MOFs in supercapacitors resul...
متن کاملStudy on Sunitinib Adsorption on Graphene Surface as an Anticancer Drug
In recent years, Nano technology and its application have moved to discovering chemicaltherapy drugs. Research, development for finding new targets in tumors, targeting methodsand stabilizing the nano particle in targeted cells is based on drug delivery and its crucialeffect. Examining the computational controlled drug delivery by graphene sheets has becomevery significant due to numerous side ...
متن کاملCost Effective and Scalable Synthesis of MnO2 Doped Graphene in a Carbon Fiber/PVA: Superior Nanocomposite for High Performance Flexible Supercapacitors
In the current study, we report new flexible, free standing and high performance electrodes for electrochemical supercapacitors developed througha scalable but simple and efficient approach. Highly porous structures based on carbon fiber and poly (vinyl alcohol) (PVA) were used as a pattern. The electrochemical performances of Carbon fiber/GO-MnO2/CNT supercapacitors were characteriz...
متن کاملFrontiers in nano-architectured carbon–metal oxide electrodes for supercapacitance energy storage: a review
Supercapacitor (SC) is an energy storage technology that bridges the gap between conventional capacitors and rechargeable batteries. Emerging nano-architectured carbon–metal oxide composites are promising for electrode designs for supercapacitors due to their unique strategy utilizing electrochemical double-layer capacitance (EDLC) and pseudo-capacitance together in single cell to optimize the ...
متن کاملPerformance comparison of graphene and graphene oxide-supported palladium nanoparticles as a highly efficient catalyst in oxygen reduction
In this work, the performance of graphene nanosheets (GNs) and graphene oxide (GO) nanosheets, as a support for palladium nanoparticles (PdNPs) toward oxygen reduction reaction (ORR), was studied. The graphene nanosheets were functionalized by a new and simple method. The PdNPs were synthesized on a glassy carbon electrode (GCE) modified with GNs or GO via a potentiostatic method; without using...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Advanced materials
دوره 23 30 شماره
صفحات -
تاریخ انتشار 2011